De la wiki:
Metamateriales Electromagnéticos [editar]
Los metamateriales son de particular importancia en el electromagnetismo (especialmente en la óptica y la fotónica). Ellos presentan un considerable potencial para una gran variedad de aplicaciones ópticas y de microondas tales como nuevos tipos sistemas moduladores, banda de filtros de transición, lentes, acopladores de microondas, y antenas aleatorias.
Con el fin de que sus propiedades funcionen en frecuencias del orden de las ondas electromagnéticas, los componentes estructurales de un metamaterial deberían ser, en principio, más pequeños que la longitud de onda de la radiación electromagnética con la que interactúa. Así, podríamos aproximar su comportamiento en esas frecuencias al de un material homogéneo, descrito con precisión por un índice de refracción eficaz. Para la luz visible, que tiene longitudes de onda inferiores a un micrómetro (560 nanómetros para la luz solar), las estructuras deberían ser del orden de la mitad o menos de la mitad de este tamaño, es decir, menos de 280 nanómetros. En frecuencias de microondas, las estructuras sólo deben ser del orden de un decímetro.
Los metamateriales por lo general consisten en estructuras periódicas, y, por tanto, tienen muchas similitudes con los cristales fotónicos; de hecho, muchos autores incluyen estos últimos dentro de la categoría de metamateriales. Sin embargo, los cristales fotónicos constan de estructuras de tamaño superior a la longitud de onda en la que funcionan, y, por tanto, su comportamiento no puede aproximarse al de un material homogéneo efectivo.
Modelos Teóricos [editar]
J. B. Pendry fue el primero en teorizar una forma práctica de hacer un metamaterial zurdo (LHM). "Zurdo" en este contexto significa un material en el que la "regla de la mano derecha" no es obedecida, lo que permite que una onda electromagnética transmita energía (con una velocidad de grupo) en la dirección opuesta a su velocidad de fase. La idea inicial de J. B. Pendry, era que una distribución de cables metálicos alineados a lo largo de la dirección de propagación de la onda dan lugar a una permitividad efectiva negativa (ε <0). Sin embargo, existen materiales naturales (como Ferroeléctricos) con permitividad negativa: el reto era construir un material que tuviera al mismo tiempo una permeabilidad negativa (μ <0). En 1999, Pendry demostró que un anillo (en «C») con el eje a lo largo de la dirección de propagación podría proporcionar esa permeabilidad negativa. De esa manera, una distribución periódica de esos cables y anillos podía dar lugar a un índice de refracción efectivo negativo.
La analogía es la siguiente: Los materiales naturales están hechos de átomos, que se polarizan en presencia de campos electromagnéticos. Los dipolos así formados pueden modificar la velocidad de la luz por un factor "n" (el índice de refracción). El anillo de alambre y los cables desempeñan el papel de dipolos atómicos: el cable actúa como un átomo ferroeléctrico, mientras que el anillo actúa como un inductor "L" y la sección abierta como un condensador "C". El anillo en su conjunto, por lo tanto, actúa como un circuito "LC". Cuando el campo electromagnético pasa por el anillo, se genera una corriente inducida, que da lugar a un campo perpendicular al incidente. A la frecuencia de resonancia del anillo, el resultado equivale a una permeabilidad negativa, y así el índice de refracción es también negativo.
Lo dicho, el campo producido es electromagnetico o sólo electrico, porque aqui el ferromagnetico(cable) ,el anillo(inductor) y la sección abierta(condensador) funcionan como circuito electrico, por la corriente electrica inducida, que genera a su vez un campo perpendicular al incidente,¿pero este segundo campo es magnetico tan solo?
Es interesante la teoria de la deconstrucción del campo electromagnetico, pero yo creo que mas que deconstrucción es un constante cambio en la polarización electromagnetica de la luz, en la que los sucesivos campos electromagneticos creados bajo diferentes espines electronicos se anulen por completo y provocando la refracción de todas las longitudes de onda del espectro electromagnetico.
¿Pero queda una cuestión vital, ademas muy logica ¿ como hará el futuro
piloto para poder comunicarse electromagneticamente con las longitudes de onda de sus aparatos, radar, sonar, radio, TV, LASER, etc SI TODOS LOS CAMPOS ELECTROMAGNETICOS ,ELECTRODINAMICOS QUEDAN afectados por dicha refracción? ¿las señales serán inteligibles a nuestros sentidos si no observamos ningun registro visual?
Dudar de todo o creerlo todo ,ambas son dos cuestiones que nos dispensan de reflexionar.
Blaise Pascal. Pensamientos